skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vanli, O Arda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 2, 2026
  2. The growing complexity of natural disasters, intensified by climate change, has amplified the challenges of managing emergency shelter demand. Accurate shelter demand forecasting is crucial to optimize resource allocation, prevent overcrowding, and ensure evacuee safety, particularly during concurrent disasters like hurricanes and pandemics. Real-time decision-making during evacuations remains a significant challenge due to dynamic evacuation behaviors and evolving disaster conditions. This study introduces a spatiotemporal modeling framework that leverages connected vehicle data to predict shelter demand using data collected during Hurricane Sally (September 2020) across Santa Rosa, Escambia, and Okaloosa counties in Florida, USA. Using Generalized Additive Models (GAMs) with spatial and temporal smoothing, integrated with GIS tools, the framework captures non-linear evacuation patterns and predicts shelter demand. The GAM outperformed the baseline Generalized Linear Model (GLM), achieving a Root Mean Square Error (RMSE) of 6.7791 and a correlation coefficient (CORR) of 0.8593 for shelters on training data, compared to the GLM’s RMSE of 12.9735 and CORR of 0.1760. For lodging facilities, the GAM achieved an RMSE of 4.0368 and CORR of 0.5485, improving upon the GLM’s RMSE of 4.6103 and CORR of 0.2897. While test data showed moderate declines in performance, the GAM consistently offered more accurate and interpretable results across both facility types. This integration of connected vehicle data with spatiotemporal modeling enables real-time insights into evacuation dynamics. Visualization outputs, like spatial heat maps, provide actionable data for emergency planners to allocate resources efficiently, enhancing disaster resilience and public safety during complex emergencies. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Gaw, N; Pardalos, PM; Gahrooei, MR (Ed.)
    This paper reviews a set of Bayesian model updating methodologies for quantification of uncertainty in multi-modal models for estimating failure probabilities in rare hazard events. Specifically, a two-stage Bayesian regression model is proposed to fuse an analytical capacity model with experimentally observed capacity data to predict failure probability of residential building roof systems under severe wind loading. The ultimate goals are to construct fragility models accounting for uncertainties due to model inadequacy (epistemic uncertainty) and lack of experimental data (aleatory uncertainty) in estimating failure (exceedance) probabilities and number of damaged buildings in building portfolios. The proposed approach is illustrated on a case study involving a sample residential building portfolio under scenario hurricanes to compare the exceedance probability and aggregate expected loss to determine the most cost-effective wind mitigation options. 
    more » « less
  4. Abstract Most of the current public health surveillance methods used in epidemiological studies to identify hotspots of diseases assume that the regional disease case counts are independently distributed and they lack the ability of adjusting for confounding covariates. This article proposes a new approach that uses a simultaneous autoregressive (SAR) model, a popular spatial regression approach, within the classical space‐time cumulative sum (CUSUM) framework for detecting changes in the spatial distribution of count data while accounting for risk factors and spatial correlation. We develop expressions for the likelihood ratio test monitoring statistics based on a SAR model with covariates, leading to the proposed space‐time CUSUM test statistic. The effectiveness of the proposed monitoring approach in detecting and identifying step shifts is studied by simulation of various shift scenarios in regional counts. A case study for monitoring regional COVID‐19 infection counts while adjusting for social vulnerability, often correlated with a community's susceptibility towards disease infection, is presented to illustrate the application of the proposed methodology in public health surveillance. 
    more » « less